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Weak limits for quantum random walks
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We formulate and prove a general weak limit theorem for quantum random walks in one and more dimen-
sions. With Xn denoting position at timen, we show thatXn /n converges weakly asn→` to a certain
distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of
Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one
dimension that make use of combinatorial and path integral methods.
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I. INTRODUCTION

Let R1 ,R2 , . . . be independent identically distribute
random variables taking values in the realsR, and suppose
that they have common meanm5E(R1) and finite nonzero
variances25E(R1

2)2m2. The central limit theorem asser
that the sumXn5( i 51

n Ri satisfies

Xn2nm

sAn
⇒N as n→`, ~1!

where N denotes the normal~Gaussian! distribution with
mean 0 and variance 1, and⇒ denotes weak convergence

Tn⇒T if E„f ~Tn!…→E„f ~T!… ~2!

for all bounded continuous functionsf :R→R. An early ver-
sion of this now classical theorem for random walks w
proved as long ago as 1733 by de Moivre, Ref.@5#. In the
modern theory, the conditions on theRi are relaxed to allow
nonindependent nonidentically distributed random variab
taking values in general spaces. Since the weak limit ofXn ,
suitably normalized, depends only on the probability m
sures associated with theXn , we may think of the centra
limit theorem as a result about weak limits of measur
rather than about the stochastic process (Xn :n>1) itself.
This is an impoverishment of the theory, since it overloo
the random variables themselves.

There has been recent interest, Ref.@1#, in a new type of
process termed a quantum random walk. Quantum ran
walks give rise to certain sequences (mn :n>1) of probabil-
ity measures, each of which is given in terms of the prec
ing measures in the sequence. While it is possible as alw
to construct random variables having these measures,
may not be done in a natural manner as in the theory
stochastic processes. One may nevertheless ask whether
ject to an appropriate normalization, themn converge weakly

*Electronic address: g.r.grimmett@statslab.cam.ac.uk
†Electronic address: svante.janson@math.uu.se
‡Electronic address: p.scudo@statslab.cam.ac.uk
1063-651X/2004/69~2!/026119~6!/$22.50 69 0261
s

s

-

,

s

m

-
ys
his
f
ub-

to some nontrivial distributional limit. Results in this direc
tion have been obtained for one-dimensional quantum wa
by Konno @2,3#. We show in this note how to simplify and
extend such results. We introduce a method of studying s
weak limits, and we apply this method to quantum walks
one and higher dimensions.

We consider first a quantum random walk on the integ
Z. At each timen (PN) the state of the particle is trans
formed by a unitary operator described by a rotation of
internal degree of freedom followed by a conditional shift
the position, Ref.@4#; the internal degree of freedom repr
sents a coin that determines the shift of the position. T
overall state of the system belongs to the Hilbert spaceHC
^ HP , whereHC is associated with the internal degree
freedom~coin space! and HP with position. In the simplest
case, we haveHC5C2 andHP5,2(Z). A suitable basis for
HP is given by the eigenstates of the position operatorX

Xvx5xvx , xPZ, ~3!

subject to^vx ,vx8&5dxx8 , the Kronecker delta. A genera
state of the system may be written with respect to this ba
as

c5(
x

(
j

c j~x!vxwj , ~4!

where the vectorswj , j 51,2, define a standard basis inHC .
The probabilitymn(x) of finding the particle at the positionx
at timen is given by the standard rule

mn~x!5(
j

u^vxwj ,cn&u2, ~5!

wherecn5Unc0 with U the time-evolution operator of the
walk andc0 the initial state of the system.

The asymptotic properties of the sequence (mn :n>1) are
studied in the following section. Such results are extende
Sec. III to quantum walks in two and more dimensions. W
highlight two special features of such asymptotics, nam
©2004 The American Physical Society19-1
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instead of normalizing byAn as in Eq.~1!, we shall normal-
ize by n, and the weak limit is absolutely continuous wi
bounded support.

II. WEAK LIMIT FOR ONE-DIMENSIONAL QUANTUM
WALKS

In order to define the position of a quantum particle a
random variable, we consider the evolution of the posit
operator in the Heisenberg picture starting from timen50.
At each time n, the eigenvalues of the operatorXn

5̇U†nXUn define the possible values of the particle’s po
tion with corresponding probability given by Eq.~5!, where
the dependence on the initial statec0 is explicit.

Although the position may be treated as an ordinary r
dom variable, the sequence (Xn :n>1) does not define a
stochastic process, since the simultaneous measureme
Xn for differentn would change the quantum random walk
each step. Therefore we let the system evolve repeat
under U up to time n, without measuring it, and then w
study the properties of the distributionmn of Xn .

Let c0 be any initial state inHC^ HP with all moments
E(Xr) finite. In order to simplify the calculations which fol
low, we consider transformations in terms of wave functi
components, and we take the Fourier transform sp

,2(Z)ˆ 5L2(K), whereK5@0,2p) is thought of as the uni
circle in R2. We define an inner product onL2(K) by

^c,f&5E
0

2p

c~k!f~k!
dk

2p
, ~6!

and we note the isometry between,2(Z) andL2(K) given by

~cx!°(
x

cxe
ixk, ~7!

with inverse

c°ĉ where ĉ~x!5E
0

2p

e2 ixkc~k!
dk

2p
. ~8!

The right shift S on ,2(Z) given by S(cx)2`
` 5(cx21)2`

`

corresponds to the multiplication operatorŜc5eikc on
L2(K).

Our fundamental Hilbert space is thusH5HC^ L2(K),
the space ofC2-valued functions

c~k!5S c1~k!

c2~k!
D , ~9!

on K satisfying

ici25ic1iL2
2

1ic2iL2
2

,`.

As usual, we consider state vectors normalized byici2

51. The evolution of the walk comprises repeated appli
tions of an internal transformation~coin toss! A acting onC2,
followed by the shiftS given by
02611
a
n

-

-

t of
t
ly

ce

-

SS c1~k!

c2~k!
D 5S eikc1~k!

e2 ikc2~k!
D . ~10!

Thus the total evolutionU on H is given by

Uc5S eik 0

0 e2 ikDAS c1~k!

c2~k!
D 5U~k!c~k!. ~11!

If we begin the quantum random walk with an initial sta
C0PH, its state aftern steps is

Cn5UnC05U~k!nC0~k!. ~12!

For eachk, U(k) has two eigenvaluesl1(k) and l2(k)
with ul j (k)u51, and has corresponding eigenvecto
v1(k),v2(k)PC2 that define a basis forH. We assume hence
forth that

l1~k!Þl2~k!, ~13!

since otherwiseU(k) is diagonal; by Eq.~11! then A is di-
agonal and the state evolves trivially, either to the right or
the left.

The mappingk°U(k) is C` and the eigenvalues are dis
tinct for eachk, and therefore the eigenvaluesl j (k) areC`

functions ofk, and the eigenvectorsv j (k) may be chosen to
be C` with normalization iv j (k)i51. By expanding the
wave function in terms of this basis, thenth time evolution
becomes

Cn~k!5U~k!nC0~k!

5l1~k!n^v1~k!,C0~k!&v1~k!

1l2~k!n^v2~k!,C0~k!&v2~k!, ~14!

where each component on the right-hand side is aC` func-
tion of k. The moments of the position distribution are give
in terms of the operatorX according to the standard formul

E~Xn
r !5^Cn ,XrCn&. ~15!

Using the isometry between,2(Z) andL2(K), the above
expectation may be written as

E~Xn
r !5E

0

2p

^Cn~k!,DrCn~k!&
dk

2p
, ~16!

where D5X̂52 id/dk is the position operator in the mo
mentum spaceL2(K). For fixedr we can computeDrCn(k)
by Eq. ~14! and Leibniz’ rule. It is easily seen that

DrCn~k!5(
j

~n!rl j~k!n2r@Dl j~k!# r

3^v j~k!,C0~k!&v j~k!1O~nr 21!, ~17!

where (n) r5n(n21)•••(n2r 11). Equations ~16! and
~17! yield, asn→`,
9-2
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E@~Xn /n!r #5E
0

2p

(
j

l j~k!n2r
„Dl j~k!…r^v j~k!,C0~k!&

3^Cn~k!,v j~k!&
dk

2p
1O~n21!

5E
0

2p

(
j

S Dl j~k!

l j~k! D r

u^v j~k!,C0~k!&u2
dk

2p

1O~n21!. ~18!

Let V5K3$1,2%, let m be the probability measure onV
given by u^C0(k),v j (k)&u2dk/2p on K3$ j %. Let hj (k)
5l j (k)21Dl j (k) and defineh:V→R by h(k, j )5hj (k). (h
is real becauseul j (k)u51) By Eq. ~18!,

E@~Xn /n!r #→E
V

hr dm as n→`. ~19!

Sinceh is bounded and the above relation holds for all in
gersr>0, we deduce by the method of moments the follo
ing. ~See Ref.@6# for the general theory of weak conve
gence.!

Theorem 1. With notation as above,

1

n
Xn⇒Y5h~Z! asn→`, ~20!

whereZ is a random element ofV with distributionm.
In particular, the support ofY is @minh, maxh#, the range

of h, at least provided the density ofm given above does no
vanish on some interval.

A similar weak limit theorem forXn /n has been proved
by Konno @2,3#, by different methods and with a quite di
ferent description of the limit.

We note that no assumption has been made above on
matrix A and the initial statec0, and thus the above resu
holds for any unitary quantum walk on the integers, subj
only to Eq.~13!. Note also thatm depends only on the over
lap between the initial state of the system and the eigen
tors ofU(k), whereash depends only on the coin flip matri
A.

As an example, we consider some specific cases of
tary quantum walks. We consider first the Hadamard ma

A5
1

A2
S 1 1

1 21D . ~21!

By simple calculus,

l j~k!5
i

A2
sink6A12

1

2
sin2k ~22!

and thus

h~k, j !5
2 il j8~k!

l j~k!
56

cosk

A22sin2k
. ~23!

Hence the limit distribution is concentrated on the interva
02611
-
-
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@minh,maxh#5F2
1

A2
,

1

A2
G . ~24!

For a general unbiased walk, we take as coin flip
unitary matrix

U~w,c!5
1

A2
S ei (w1c) e2 i (w2c)

ei (w2c) 2e2 i (w1c)D , ~25!

wherew,cPR, with corresponding evolution

U~k!5
1

A2
S eikei (w1c) eike2 i (w2c)

e2 ikei (w2c) 2e2 ike2 i (w1c)D 5̇Uwc~k!.

~26!

With w1c5a, w2c5b, the eigenvalues may be written i
the form

l j~k!5
i

A2
sin~k1a!6A12

1

2
sin2~k1a!, ~27!

and therefore

h~k, j !5
2 il j8~k!

l j~k!
56

cos~k1a!

A22sin2~k1a!
. ~28!

Thus the general unbiased walk has exactly the same be
ior as the Hadamard case, subject to a shift in the momen
parameter of the wave amplitudes. We have as before tha
domain of the limit distribution is as in Eq.~24!.

Finally we introduce a ‘‘biased’’ random walk by definin
a bias factorr in the coin flip matrix

U~r!5S Ar A12r

A12r 2Ar
D ~29!

that gives rise to the evolution

Ur~k!5S eikAr eikA12r

e2 ikA12r 2e2 ikAr
D . ~30!

The evolution underU of a general two-component wav
function corresponds to

S c1

c2
D °S eik 0

0 e2 ikD 3S Arc1~k!1A12rc2~k!

A12rc1~k!1Arc2~k!
D ,

~31!

where the two internal states transform differently. In fa
the first component receives a kick of momentum1k with
probability r and 2k with probability 12r; the opposite
holds for the second component.

In terms ofr, the eigenvalues are

l j~k!5 iAr sink6A12r sin2k, ~32!

and thus
9-3
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h~k, j !5
2 il j8~k!

l j~k!
56

cosk

Ar212sin2k
. ~33!

It follows that @minh, maxh#5@2Ar,Ar#, whence the bias
factor of the walk sets a limit on the asymptotic momentu
distribution by changing the support of the limit distributio

The representation~20! of the limit variable allows a di-
rect computation of the asymptotic probability density fun
tion in most cases of interest. For example, assume tha
initial state is at position 0. If the coin initially is in a give
state i 51 or 2, thenC0(k)5(0

1) or (1
0), respectively, and

thusm5uv j i (k)u2dk/2p on K3$ j %. If we consider instead a
random initial state of the coin, we have a mixture of the
two pure states and thus

m5
1

2 (
i 51

2

uv j i ~k!u2
dk

2p
5

dk

4p
~34!

on K3$ j %; that is,m is the uniform distribution onV. In the
Hadamard case, for example, withh given by Eq.~23!, if
X050 and the coin is initially random, then, for21/A2<y
<1/A2,

P~Y<y!5E
h21([ 2`,y])

dm

52E
cosk/A11cos2k<y

dk

4p

512
1

p
arccosS y

A12y2D ,

which gives as densityf (y) of Y,

f ~y!5
dy

p~12y2!A122y2
, ~35!

in agreement with the result of Ref.@2#. The same holds for
every unbiased walk defined by Eq.~25!.

The above result can be interpreted as the weak con
gence of the sequenceX̂n /n of operators onH, asn→`, to
an operatorV, defined on a dense subspace ofH with spectral
resolution

V5E (
j

S Dl j~k!

l j~k! DdEj~k!, ~36!

where dEj (k) is the projector over the eigenspace cor
sponding to the eigenvaluel j (k) of U(k). @The weak con-
vergence of unbounded operators here is formally define
the weak convergence of the corresponding unitary opera
exp(isX̂n /n)→exp(isV) for every reals.# The limit operator is
diagonal in the eigenbasis of the unitary evolution of t
walk and gives

^X̂n&;^V&n ~37!
02611
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that represents the Heisenberg equation of motion for
position, in the limitn→`, if we interpretV as the ‘‘veloc-
ity’’ operator. Thus, asymptotically, the center of the wa
packet moves with constant speed, given byV. It is worth
pointing out that, although the equation of motion resemb
the one of a classical system with constant velocity, the s
of the quantum particle spreads in time, with a quadra
growth in the variance of the position distribution.

III. WEAK LIMIT FOR d-DIMENSIONAL QUANTUM
WALKS

Let d>1. The classical random walk on the integer latti
Zd models the motion of a particle that moves in an unbia
manner in ad-dimensional space. Letei , i P$1,2, . . . ,n%, be
the unit vector in the direction of increasingi th coordinate.
Let R1 ,R2 , . . . be independent identically distributed ra
dom variables, each being uniform on the set$6ei : i
51,2, . . . ,d%. The position of the particle at timen is given
as the sum

Xn5(
j 51

n

Rj . ~38!

By the central limit theorem ford-dimensional random walk
the random vectorXn /An converges weakly asn→` to a
random vector inRd having the multivariate normal distribu
tion N(0,I /d), whereI is thed3d identity matrix. We shall
see in the following that a corresponding weak converge
holds for ad-dimensional quantum random walk.

The 1-dimensional quantum random walk of th
last section may be extended tod dimensions
as follows. Let e1 , . . . ,e2d denote the 2d possible
shift vectors6ei , i 51,2, . . . ,d. The state of the system
is a vector C5„C(k)J…J51

2d PH5L2(Kd) ^ C2d where k
5(k1 ,k2 , . . . ,kd) and theJth component corresponds to
shift by the vectoreJ . At each time, the state is transforme
by applying a rotationA acting on C2d, followed by a
d-dimensional shift onL2(Kd), cf Eq. ~10!,

S(d)C~k!J5ei eJ•kC~k!J . ~39!

The general unitary operator that evolves the walk from ti
n50 is thus

U~k!5D$ei e1•k, . . . ,ei e2d•k%A, ~40!

whereD denotes the 2d diagonal matrix. The operatorU(k)
can be diagonalized inH, and has 2d eigenvalues and 2d
eigenvectors. Assume that one may choose the latter asC`

functions ofk. ~See the remark at the end of the section.! Let
vJ(k), lJ(k) be, respectively, the eigenvectors and eigenv
ues of U(k), with J51,2, . . . ,2d. The initial state of the
system can be written in this basis as

C0~k!5 (
J51

2d

^vJ~k!,C0~k!&vJ~k!, ~41!

and the state at timen as
9-4
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Cn~k!5 (
J51

2d

lJ
n~k!^vJ~k!,C0~k!&vJ~k!. ~42!

The d-dimensional position operator X(d)

5(X1 ,X2 , . . . ,Xd) acts onL2(Kd) as the differential vector
operator D (d)5(2 id/dk1 ,2 id/dk2 , . . . ,2 id/dkd). By
considering each component ofD (d) separately, it is easily
seen that the operatorsX̂i ,n converge weakly onH, as
n→`, to the corresponding componentsVi , where

Vi5E (
J

S DilJ~k!

lJ~k! DdEJ~k!, ~43!

wheredEJ(k) denotes again the projector onto the eige
pace ofU(k) with eigenvaluelJ(k). This does not imply,
however, that the sequence of random vectors assoc
with the process converges weakly onV5Kd

3$1, . . . ,2d%. In general, the evolution operatorU(k) gen-
erates entanglement between the different spatial direct
and it is necessary therefore to consider also the correla
terms between different components ofX̂(d).

The so-called Crame´r-Wold device enables a simplifica
tion: in order that a sequence of random variables conve
weakly, it suffices that all linear combinations converg
More properly, we have the following, see Ref.@6#, Theorem
29.4.

Theorem 2. Consider a sequenceXn5(X1,n ,X2,n ,
. . . ,Xd,n), n>1, of random d vectors, and let Y
5(Y1 ,Y2 , . . . ,Yd) be a randomd vector. If
a

en

02611
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(
j 51

d

cjXj ,n⇒(
j 51

d

cjYj as n→`, ~44!

for all c5(c1 ,c2 , . . . ,cd)PRd, thenXn⇒Y.
Suppose for simplicity thatd52. For fixedr, we compute

the expectation

EF S (
j 51

2

cj X̂j ,n /nD r G
5

1

nr (
p50

r S r

pD c1
r 2pc2

p^Cn ,D1
r 2pD2

pCn&, ~45!

where we have used the fact that operators along diffe
directions commute. We have

D2
pCn~k!5(

J
~n!plJ

n2p~k!

3@D2lJ~k!#p^vJ~k!,C0~k!&vJ~k!1O~np21!

~46!

D1
r 2p@D2

pCn~k!#5(
J

~n!rlJ
n2r~k!

3@D1lJ~k!# r 2p@D2lJ~k!#p^vJ~k!,

C0~k!&vJ~k!1O~nr 21!. ~47!

Thus, asn→`,
EF S ~c1X̂11c2X̂2!n

n
D r G→E (

J
H (

p50

r S r

pD c1
r 2pc2

p h1~k,J!r 2ph2~k,J!pJ u^vJ~k!,C0~k!&u2
dk

~2p!2

5E ( $c1h1~k,J!1c2h2~k,J!%r u^vJ~k!,C0~k!&u2
dk

~2p!2
,

the

od-
ad-
where hi(k,J)5lJ(k)21DilJ(k), i 51,2. With V5K2

3$1,2,3,4%, andZn5c1X1,n1c2X2,n , we have

E@~Zn /n!r #→E
V

~c1h11c2h2!rdm, ~48!

wherem is the probability measure onV given by

dm5u^vJ~k!,C0~k!&u2
dk

~2p!2
on K23$J%. ~49!

By the method of moments as in the one-dimensional c
and the Crame´r-Wold device~Theorem 2!, we obtain a gen-
eralization of Theorem 1 to the two-dimensional case.

As a simple example, consider the two-dimensional g
eralization of the Hadamard matrix given by
se

-

A5
1

2 S 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

D . ~50!

In the above notation, the unitary operator that evolves
walk is represented by

U~k!5D$eik1,eik2,e2 ik2,e2 ik1%A. ~51!

The operatorU(k) may be expressed thus as a tensor pr
uct of two one-dimensional operators that describe H
amard walks along the directions defined byk15(k1
1k2)/2 andk25(k12k2)/2:

U~k!5U~k1! ^ U~k2!. ~52!
9-5
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Its eigenvalues and eigenvectors are products of thos
U(k1), U(k2), respectively, and therefore

lJ~k!5l j 1
~k1!l j 2

~k2!, ~53!

where thel j , j 51,2, are given by Eq.~22! andJ51,2,3,4
labels the pairs (j 1 , j 2) in some order. Thus

hi~k,J!5lJ~k!21DilJ~k!

56
cos~k1!

2A22sin2~k1!

6~21! i 21
cos~k2!

2A22sin2~k2!
~54!

for i 51,2. The limit velocity operatorV is given by V
5(V1 ,V2), with

Vi5E (
J

hi~k, J!dEJ~k!, J51,2,3,4. ~55!

The result may be extended to arbitrary dimensiond>2
using the same argument, yielding the following result.

Theorem 3. For thed-dimensional quantum random walk

1

n
Xn⇒Y5„h1~Z!, . . . ,hd~Z!…, ~56!

where Z is a random element ofV5Kd3$1, . . . ,2d%
with distribution m given by Eq. ~49! and hi(k,J)
5lJ(k)21DilJ(k).

The limit observable is again diagonal in the eigenbasis
U(k) and represents the velocity forn→`.

Technical remark.We assumed above that the eigenve
tors ofU(k) can be chosen asC` functions ofk. We do not
know if this is always possible whend>2, but it can be
replaced by the following, weaker hypothesis, which we
lieve always holds: There exists an open subsetO of Kd with
full Lebesgue measure~that is, the complement is a null se!
such that the eigenvectors~and thus the eigenvalues! can be
chosen infinitely differentiable inO. @For example, this holds
if there is any pointk whereU(k) has distinct eigenvalues
a-
on

02611
of

f

-

-

because we then can chooseO as the subset of (0,2p)d

where the discriminant is nonzero; we omit the proof th
this set has the required properties.#

Under this assumption, the argument above holds for
ery initial value that is an infinitely differentiable functio
with support inO. ~The functionh will be defined onO
3$1,2, . . . ,2d%, but that is enough.! Such functions are
dense inH, by a standardL2 result. Hence, given any initia
stateC0, and ane.0, we can find an initial stateC0

e with
iC02C0

e i,e for which

1

n
Xn

e⇒„h1~Ze!, . . . ,hd~Ze!…. ~57!

Since the evolution operators are unitary, we haveiCn

2Cn
e i5iC02C0

e i,e for every n, and it follows that for
any observable eventA, the probabilitiesP(XnPA) and
P(Xn

ePA) differ by at most 2e. Similarly, it is easy to see
from Eq. ~49! that uP(ZPB)2P(ZePB)u,2e for every
B,V. It is now easy to interchange the two limitse→0 and
n→` and obtain Eq.~56!; see Ref.@6#, Theorem 4.2. Theo-
rem 3 thus holds for every initial state, also under the wea
assumption.

IV. FURTHER EXTENSIONS

We have, for simplicity, only considered simple rando
walks, where the shifts are by unit vectors. More genera
we can allow shifts by any given finite set$e1 ,e2 , . . . ,eN%
of vectors inZd. The coin flip is now represented by a un
tary matrixA in CN. Theorem 3 extends to this case, with 2d
replaced byN, by the same proof.

An interesting example is when the shift vectors are
2d vectors in$21,1%d; thus each coordinate is shifted by61
in each step.
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